CHEMISTRY 30 ULTRA-CONDENSED COURSE NOTES

THERMOCHEMISTRY SUMMARY

SKILLS TO MASTER

- Carrying out calorimetry calculations
- Relating enthalpy & molar enthalpy calculations
- Using standard enthalpies of formation
- Activation energy
- FORMULAS MUST BE MEMORIZED

Enthalpy change $\Delta H = n \Delta H$

- ΔH = enthalpy change (kJ)
	- $n =$ amount of substance (moles), from either:
		- the balancing number from the equation.

- given in problem as moles of chemical statement.

$$
n = \frac{m}{M} \quad \text{or} \quad n = CV
$$

 Δ_r H = molar enthalpy of reaction for specified chemical (kJ/mol) Subscripts can be used to denote the reaction type: e.g. "r" for general reaction, "c" for combustion, "f" for formation.

Calorimetry

n∆rH=mc∆t

where: $n =$ moles of chemical specified (mol) calculated either by n=CV for solutions or n=m/M for solids Δ_rH = molar enthalpy of reaction (KJ/mol) $m =$ total (volume) mass of water in calorimeter (Kg) $c = 4.19$ KJ/Kg $^{\circ}$ C Δt = temperature change (°C) t_i – t_f

Standard Enthalpies of Formation

Used to calculate enthalpy change for a chemical reaction

$$
\Delta H = \Sigma n \Delta_f H_{\text{products}} - \Sigma n \Delta_f H_{\text{reactants}}
$$

Where: ΔH = enthalpy change kJ

Σ means sum of

 $n =$ moles (mol)

 Δ_r H = molar enthalpy of formation (kJ/mol) from data book pages 6 & 7

*Notes: ∆rH of elements in their natural state is 0 kJ/mol. This is a set reference value. Combustion reactions in open systems produce $H_2O(q)$, while in closed systems $H_2O(1)$ is produced.

Activation Energy

- An energy barrier between reactants and products. This is the minimum amount of energy required to cause a chemical reaction to occur.
- The activation energy is the minimum amount of collision energy required to force both reactant molecules together into a single entity called an **activated complex**.
- **Catalysts** provide an alternative reaction pathway with a lower activation energy.
- Catalysts decrease time to reach equilibrium but do not change K_c or equilibrium position.

ECTROCHEMISTRY SUMMARY

sacri cial anode

 $Mg(s) \rightarrow Mg^{2+}(aq) + 2e$

reduction

oxidation

EQUILIBRIA & LE CHATELIER'S SUMMARY

SKILLS TO MASTER

- **1.** Writing equilibrium-law expressions.
- **2.** Calculating equilibrium values at equilibrium
- **EQUILIBRIUM LAW** (expressions & constants)
- Equilibrium reactions must show evidence of reversibility
- Macroscopic properties (temp, pressure, pH, colour) are constant.
- Equilibrium can only be reached in a closed or isolated system.
- Equilibrium can be approached from either direction.
- Equilibrium constants relate the extent of the equilibrium
	- Kc>1 products favoured
	- Kc<1 reactants favoured
	- Kc=1 neither reactants nor products favoured.
- **3.** Calculating equilibrium concentrations from initial. (I.C.E. tables)
- **4.** Le Chatelier's principle

EQUILIBRIUM EXPRESSION

$$
A + bB \rightleftharpoons \quad \text{dD}
$$
\n
$$
K_c = \frac{[C]^c [D]^d}{[A]^a [B]^b}
$$

- Pure solids and solvents do not appear in the K_c expression.
- \bullet Do not include H₂O in aqueous systems.

LE CHATELIER'S PRINCIPLE—EQUILIBRIUM SHIFTS

- A system in equilibrium tends to respond so as to relieve the effect of any stress upon the system.
- A stress is anything that causes a change in the equilibrium concentrations.
- Temperature change is the only stress that can change the value of an equilibrium constant, K_c
- Catalysts increase reaction rate (decrease time to achieve equilibrium) but do not affect the equilibrium position and K_c value.
- Catalysts decrease the activation energy.
- General rules for applied stresses:
	- Remove product or add reactant-shift right
	- Remove reactant or add product—shift left
	- Decrease volume—shift to side with fewer gas moles.

BRONSTED-LOWRY ACID-BASE SUMMARY

- $K_b = \frac{[HB][OH^2]}{[B^2]}$ $1 - 1^2$ $K_b = \frac{[OH^1]}{[B^1]}$
-
-
- $pH + pOH = 14.00$

Bronsted-Lowry pH calculations

Strong acid

Since strong acids ionize completely to H_3O^+ pH can be directly calculated from acid concentration:

 $pH = -log [H_3O^+]$

Strong base

Since strong bases dissociate completely to OH⁻ pH cannot be directly calculated. You calculate pOH first using $pOH = -log [OH^{-}]$ then use pH = 14.00 – pOH

Weak Acid

Weak acids only partially ionize with water to produce some H_3O^+ thus you must first determine the $[H_3O^+]$ by using an equilibrium expression:

First use
$$
K_a = \frac{[H_3O^+]^2}{[HA]}
$$
 rearranged to $[H_3O^+] = \sqrt{K_a}$.

then use $pH = -log [H_3O^+]$

Weak base

Weak bases only partially ionize with water to produce some OH⁻ thus you must first determine the [OH⁻] by using an equilibrium expression:

First find the K_b of the weak base using $K_w=K_aK_b$ rearranged to K

$$
K_{b} = \frac{K_{w}}{K_{a \text{ of conjugate acid}}}
$$

then use
$$
K_b = \frac{[OH^-]^2}{[A^-]}
$$
 rearranged to $[OH^-] = \sqrt{K_b}$.

next use $pOH = -log [OH^{-}]$ and finally $pH = 14.00 - pOH$

BUFFERS

Solutions that resist changes in pH when either small amounts of strong acid or strong base are added.

Buffer solutions contain a weak acid and its conjugate base in the same concentrations:

$$
[HA] = [A^-]
$$

pH TITRATION CURVES

The best indicators to use will change colour **at or near** the equivalence point

ORGANIC CHEMISTRY SUMMARY

Skills to Master

- Naming organic compounds.
- Identifying functional groups.
- Identifying organic chemical reactions.
- Predicting organic reaction products.
- Identifying polymers & monomers.

Figure 15.2 In each addition reaction shown here, the electrons in the second bond are rearranged and form bonds with the two additional atoms.

Addition Reactions (start with a double or triple bond) **Bromine test or KMnO**₄ test for double & triple **Addition Reactions** (start with a double or triple bond) **bonds (unsaturated compounds)**

- The addition of elemental bromine ($Br₂$), which has an orange-brown colour, or the purple coloured KMnO₄, to a hydrocarbon can be used to test for the presence of double or triple bonds.
- Alkenes and alkynes will react with $Br₂$ (& KMnO₄), remaining clear.
- Alkanes and benzene do not react with $Br₂$ or KMnO₄, so the solution has an orange-brown colour due to the presence of $Br₂$ molecules (or is purple due to the presence of unreacted MnO_4^{1-} ion)
- Example:

Elimination Reactions

• removal of a functional group resulting in the formation of a double bond.

Alcohol elimination—alcohol + strong acid \rightarrow alkene + water

Alkyl halide elimination—alkyl halide + sodium ethoxide →alkene + ethanol + sodium halide salt

Substitution Reactions– occur with alkanes only

A hydrogen atom or functional group (e.g. Cl atom) is replaced with a different functional group)

Alkyl halides can undergo a substitution reaction with hydroxide ion (OH¹⁻) to produce an alcohol.

Alkanes can undergo substitution with a halogen to produce an alkyl halide. This requires the energy from UV light.

Benzene behaves like an alkane and can undergo substitution with a halogen molecule to produce an alkyl halide and a small acid molecule.

Esterification (a type of condensation reaction)-An alcohol combines with a carboxylic acid to produce an ester.

Addition polymers

- **monomer must be an alkene or alkyne**
- The double bond is lost/ the triple bond gets reduced to a double bond
- Different functional groups give different properties.

Condensation polymers– **monomer(s) must be bifunctional** (a functional group on both ends of the carbon parent chain).

