CHEMISTRY 30 ULTRA-CONDENSED COURSE NOTES

THERMOCHEMISTRY SUMMARY

SKILLS TO MASTER

- Carrying out calorimetry calculations
- Relating enthalpy & molar enthalpy calculations
- Using standard enthalpies of formation
- Activation energy
- FORMULAS MUST BE MEMORIZED

Enthalpy change $\Delta H = n\Delta H$

- ΔH = enthalpy change (kJ)
 - n = amount of substance (moles), from either:
 - the balancing number from the equation.

- given in problem as moles of chemical statement.

$$n = \frac{m}{M}$$
 or $n = CV$

 $\Delta_r H$ = molar enthalpy of reaction for specified chemical (kJ/mol) Subscripts can be used to denote the reaction type: e.g. "r" for general reaction, "c" for combustion, "f" for formation.

Calorimetry

$n\Delta_r H = mc\Delta t$

where: n = moles of chemical specified (mol) calculated either by n=CV for solutions or n=m/M for solids $\Delta_r H$ = molar enthalpy of reaction (KJ/mol) m = total (volume) mass of water in calorimeter (Kg) c = 4.19 KJ/Kg °C Δt = temperature change (°C) t_i - t_f

Standard Enthalpies of Formation

• Used to calculate enthalpy change for a chemical reaction

$$\Delta H = \Sigma n \Delta_{\rm f} H_{\rm products} - \Sigma n \Delta_{\rm f} H_{\rm reactants}$$

Where: $\Delta H = enthalpy change kJ$

 Σ means sum of

n = moles (mol)

 Δ_r H = molar enthalpy of formation (kJ/mol) from data book pages 6 & 7

*Notes: $\Delta_r H$ of elements in their natural state is 0 kJ/mol. This is a set reference value. Combustion reactions in open systems produce H₂O(g), while in closed systems H₂O(I) is produced.

Activation Energy

- An energy barrier between reactants and products. This is the minimum amount of energy required to cause a chemical reaction to occur.
- The activation energy is the minimum amount of collision energy required to force both reactant molecules together into a single entity called an activated complex.
- Catalysts provide an alternative reaction pathway with a lower activation energy.
- Catalysts decrease time to reach equilibrium but do not change K_c or equilibrium position.

LECTROCHEMISTRY SUMMAR

anode and the object is

the cathode.

iron

pipeline (cathode)

 $O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O(l)$

reduction

sacri cial anode

 $Mg(s) \rightarrow Mg^{2+}(aq) + 2e$

oxidation

H₂O

0,

EQUILIBRIA & LE CHATELIER'S SUMMARY

SKILLS TO MASTER

- **1.** Writing equilibrium-law expressions.
- 2. Calculating equilibrium values at equilibrium
- EQUILIBRIUM LAW (expressions & constants)
- Equilibrium reactions must show evidence of reversibility
 Macroscopic properties (temp, pressure, pH, colour) are con-
- Macroscopic properties (temp, pressure, pH, colour) are constant.
- Equilibrium can only be reached in a closed or isolated system.
- Equilibrium can be approached from either direction.
- Equilibrium constants relate the extent of the equilibrium
 - Kc>1 products favoured
 - Kc<1 reactants favoured
 - Kc=1 neither reactants nor products favoured.

- **3.** Calculating equilibrium concentrations from initial. (I.C.E. tables)
- **4.** Le Chatelier's principle

EQUILIBRIUM EXPRESSION

$aA + bB \rightleftharpoons dD$ $K_{c} = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$

- Pure solids and solvents do not appear in the K_c expression.
- Do not include H_2O in aqueous systems.

LE CHATELIER'S PRINCIPLE—EQUILIBRIUM SHIFTS

- A system in equilibrium tends to respond so as to relieve the effect of any stress upon the system.
- A stress is anything that causes a change in the equilibrium concentrations.
- Temperature change is the only stress that can change the value of an equilibrium constant, $K_{\rm c}$
- Catalysts increase reaction rate (decrease time to achieve equilibrium) but do not affect the equilibrium position and K_c value.
- Catalysts decrease the activation energy.
- General rules for applied stresses:
 - Remove product or add reactant—shift right
 - Remove reactant or add product—shift left
 - Decrease volume—shift to side with fewer gas moles.

BRONSTED-LOWRY ACID-BASE SUMMARY

- Equilibrium constant for bases $K_{b} = \frac{[HB][OH^{1-}]}{[B^{1-}]}$ which simplifies to $K_{b} = \frac{[OH^{1-}]^{2}}{[B^{1-}]}$
- pOH= -log[OH¹⁻] and [OH¹⁻]=10^{-pOH}
- pH + pOH = 14.00

Bronsted-Lowry pH calculations

Strong acid

Since strong acids ionize completely to H_3O^+ pH can be directly calculated from acid concentration:

 $pH = -log [H_3O^+]$

Strong base

Since strong bases dissociate completely to OH^- pH cannot be directly calculated. You calculate pOH first using $pOH = -log [OH^-]$ then use pH = 14.00 - pOH

Weak Acid

Weak acids only partially ionize with water to produce some H_3O^+ thus you must first determine the $[H_3O^+]$ by using an equilibrium expression:

First use
$$K_a = \frac{[H_3O^+]^2}{[HA]}$$
 rearranged to $[H_3O^+] = \sqrt{K_a}$.

then use $pH = -log [H_3O^+]$

Weak base

Weak bases only partially ionize with water to produce some OH^- thus you must first determine the $[OH^-]$ by using an equilibrium expression:

First find the K_b of the weak base using $K_w = K_a K_b$ rearranged to K

$$K_{b} = \frac{W}{K_{a \text{ of conjugate acid}}}$$

then use
$$K_b = \frac{[OH^-]^2}{[A^-]}$$
 rearranged to $[OH^-] = \sqrt{K_b}$.

next use $pOH = -log [OH^-]$ and finally pH = 14.00 - pOH

BUFFERS

Solutions that resist changes in pH when either small amounts of strong acid or strong base are add-ed.

Buffer solutions contain a weak acid and its conjugate base in the same concentrations:

$$[\mathsf{HA}] = [\mathsf{A}^-]$$

pH TITRATION CURVES

The best indicators to use will change colour at or near the equivalence point

ORGANIC CHEMISTRY SUMMARY

Skills to Master

- Naming organic compounds.
- Identifying functional groups.
- Identifying organic chemical reactions.
- Predicting organic reaction products.
- Identifying polymers & monomers.

Family Name	Suffix or prefix	Functional group	Example	Generic formula
alkene	-ene	cc		C_nH_{2n}
alkyne	-yne	cc		$C_n H_{2n-2}$
alcohol	-ol	-OH called a hydroxyl group	propan-2-ol	R-OH
alkyl halide	fluoro chloro bromo iodo	F- Cl- Br- I-	Br 2-bromobutane	R-X where X is a halo- gen.
carboxylic acid	-oic acid	R OH	о он propanoic acid	R-COOH
ester	-oate		o methylpropanoate	R-COOC-R

Addition Reactions (start with a double or triple bond)

Figure 15.2 In each addition reaction shown here, the electrons in the second bond are rearranged and form bonds with the two additional atoms.

Bromine test or KMnO₄ test for double & triple bonds (unsaturated compounds)

- The addition of elemental bromine (Br₂), which has an orange-brown colour, or the purple coloured KMnO₄, to a hydrocarbon can be used to test for the presence of double or triple bonds.
- Alkenes and alkynes will react with $\mathsf{Br}_2\left(\&\ \mathsf{KMnO}_4\right)$, remaining clear.
- Alkanes and benzene do not react with Br₂ or KMnO₄, so the solution has an orange-brown colour due to the presence of Br₂ molecules (or is purple due to the presence of unreacted MnO₄¹⁻ ion)
- Example:

Elimination Reactions

• removal of a functional group resulting in the formation of a double bond.

Alcohol elimination—alcohol + strong acid \rightarrow alkene + water

Alkyl halide elimination—alkyl halide + sodium ethoxide →alkene + ethanol + sodium halide salt

Substitution Reactions- occur with alkanes only

• A hydrogen atom or functional group (e.g. Cl atom) is replaced with a different functional group)

Alkyl halides can undergo a substitution reaction with hydroxide ion (OH¹⁻) to produce an alcohol.

Alkanes can undergo substitution with a halogen to produce an alkyl halide. This requires the energy from UV light.

Benzene behaves like an alkane and can undergo substitution with a halogen molecule to produce an alkyl halide and a small acid molecule.

Esterification (a type of condensation reaction)-An alcohol combines with a carboxylic acid to produce an ester.

Addition polymers

- monomer must be an alkene or alkyne
- The double bond is lost/ the triple bond gets reduced to a double bond
- Different functional groups give different properties.

Condensation polymers- monomer(s) must be bifunctional (a functional group on both ends of the carbon parent chain).

